If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.0t^2-27.53t-115=0
a = 4.0; b = -27.53; c = -115;
Δ = b2-4ac
Δ = -27.532-4·4.0·(-115)
Δ = 2597.9009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27.53)-\sqrt{2597.9009}}{2*4.0}=\frac{27.53-\sqrt{2597.9009}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27.53)+\sqrt{2597.9009}}{2*4.0}=\frac{27.53+\sqrt{2597.9009}}{8} $
| 4(5n-1)=24+6 | | 7y+2+2y+4=14y-24 | | 12u=81+3u | | 7(5+2x)=7 | | -8-(x-6)=4x+3(-x+1) | | 8x+40=2x+8 | | 1590p=10500 | | 3(x+5)=2x+17 | | 2x-3(x-3)=3 | | -8(1-2x)-6x=-23+5x | | 7(-10+4x)=-350 | | 4x+12-7x-10x-4=34 | | 8c-6=6c+4 | | 1500p=10509 | | 38=-25+9x | | -3(w+4)-2w=(w+1) | | 6s−4=8(2+41 s | | 3+4(x+1)=-4x-7 | | 3/8n=1.4 | | 6(5x+10)=-240 | | 1/2x+3/2(x=1)-1/4=5 | | a=6-3 | | 2x(x=1)=0 | | 1.7(-2r+6.6-4r)=15 | | 6x+10=-5x+65 | | 9x+22=4x+2 | | 361=151-15x | | x=-3+30 | | -6x/5+2=14 | | 20u−19u−1=13 | | 51/2-u=9/5 | | 4x(x)=7 |